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Dear John:

Gary Willmes and I previously promised you a pulsed arcjet final report to

present the results for the experiments with a truncated nozzle. This letter describes
where we stand today and our near term plans. I am requesting that, based on our

significant performance increases, you continue funding for another year, which

will enable Gary to finish his Ph. D. thesis work.

As you recall, we had concluded that viscous losses in the nozzle were one of

the two dominant loss mechanisms in the pulsed arcjet, the other one being heat

transfer losses in the capillary. We have been investigating the effect of area ratio

on pulsed arcjet performance based on the theory and experimental observations

that viscous losses become more severe as the Reynolds number based on d*
decreases below approximately 300. At these Reynolds numbers, the directed kinetic

energy in the propellant is converted to thermal energy by viscous dissipation, and a

long nozzle may decelerate rather than accelerate the flow. We wrote a quick-and-

dirty quasi-lD steady FORTRAN code to estimate how much to shorten the nozzle.

Based on these results, we machined the original 20-degree half-angle conical nozzle

from an area ratio of 200 down to 35, followed by an additional decrease to 15. The

results from the 35:1 case are attached and show a performance improvement of

approximately 50 seconds Isp with the lower area ratio, up to the 240 second range.
The second figure shows large efficiency increases at lower specific energy, obtained

by increasing the mass flow rate at roughly the same input power, to a maximum of

37%. These results appear to confirm our expectations of higher performance at

lower area ratios and higher Reynolds numbers. We expect the 15:1 nozzle to raise

the Isp further to the 275 second range, when the tests are completed.

We have encountered a boron nitride material problem involving the

dielectric strength of the boron nitride at high temperature. Due to this problem, we

have been unable with the present design to obtain good performance
measurements for the 15:1 nozzle. Since the shorter truncated nozzle has less

radiating surface area, the capillary runs at a higher temperature. We are also

running at a slightly higher breakdown voltage, and the combination of higher

temperature and voltage has exceeded the capability of the boron nitride to hold off



the 2 - 3 kV breakdown voltage. We have tested a number of different combinations

of alumina insulator sleeves as a short-term fix but have been unable to obtain long-
enough steady state operation for performance measurements due to a limited

selection of in-stock material. There are two possible solutions. One is to radius a
sharp corner on the nozzle to reduce the breakdown E-field, and this will take 3 - 4

weeks before we can resume testing. Second, we are investigating switching to
Si3N4. This will take longer.

In parallel with the area ratio investigation, we have implemented a number
of system improvements. We have installed a water-cooled enclosure around the

thrust stand based on the NASA design in order to eliminate thermal drift. We

modified the propellant injection so that the flow enters the capillary axially
through the cathode rather than radially through the capillary wall. This reduces

blowback and makes the capillary fabrication simpler, and we expect it to improve

the heat transfer characteristics in the capillary by eliminating recirculation. Finally,

we have designed and installed a simple control circuit for the power supply that

allows us to control the pulse rate externally at a desired level. Since the pulse rate
is roughly proportional to input power level, this gives us much better control over

the input power as well.

We feel that a 2-D, second-order time and space-accurate numerical solution
is necessary to describe the post-pulse unsteady, viscous capillary and nozzle flow

with heat loss, using the MacCormack finite difference algorithm. Although this

work has not been started, the algorithm has been proven elsewhere, and requires

only the application of time-dependent B.C.'s.

The higher temperature capillary material will allow us to complete the area
ratio investigation, followed by additional experiments to improve the thermal

characteristics. We believe that these results will assist the development of other

ultra-low-power electrothermal thrusters, which are likely to encounter some of the

same loss mechanisms that we are encountering.

In summary, the pulsed arcjet program has demonstrated solid, real

achievement on a tight budget. I hope that you will see fit to continue support for
another year.

Sincerely,

Associate Professor

C_ Sheryl Netherton, AAE Dept.

Center for Aero Space Agency
ATTN: Accessioning Department

800 Elk Ridge

Landing Road

Linthicum Heights, MD 21090-2934
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Performance of Low Power Pulsed Arcj ets

1.0 Review of Experimental Results

Phase I (September 93 - January 94) The first build of the radiation-cooled

pulsed arcjet, including a low-inductance current path, was completed in October

1993. The first phase of testing was successfully conducted through mid-December at

UIUC, and the thruster demonstrated stable operation at power levels from 88 to 319

watts. All planned measurements were obtained including breakdown voltage,

input power, and discharge pulse shape for two different propellants, N2 + 2H2 and

helium. A number of different capillary lengths, cathode geometry's, and capacitor

combinations were tested to determine their effects on thruster electrical

characteristics. The ringing effect was reduced from 4-5 rings down to 2-3 rings,

indicating a close impedance match between the external circuit and the arc

resistance. The thruster met the goal of 30 minutes continuous run time, which

was selected as the requirement for thrust stand testing. Performance testing was

performed on February 1, 1994 at NASA LeRC with a measured Isp of 176 seconds

and 3 percent efficiency.

Phase II (February 94 - August 94) Post-test analysis and inspection of the

pulsed arcjet following the NASA LeRC test indicated that damage sustained in

shipment had caused leakage around the cathode-capillary seal and ultimately

caused loose BN particles to become lodged in the nozzle throat. A design change

was made to the seal which increased the cathode diameter from 3.18 mm to 4.76

mm. The experimental performance measurements and calculated numerical

results indicated that the thruster thermal efficiency was a significant loss

mechanism and needed improvement. To reduce radiation and conduction heat

transfer losses, a new thruster body was fabricated with a wall thickness reduced

from 6.35 mm to 0.81 mm. A new nozzle was fabricated with a 40 percent reduction

in thermal mass and a smaller area ratio, decreased from 250:1 to 150:1. Initial tests

at UIUC showed that the thermal characteristics of the thruster had improved

because the nozzle temperature reached 1220 K for 125 watts input power.

Subsequent performance tests at NASA LeRC gave a measured Isp of 177 to 194

seconds and 3.5 to 4.5 percent efficiency over a range of specific power from 40 to 80

MJ/kg.



Phase III (September 94 - Present) Post-test inspections of the BN capillary

revealed that leakage around the cathode-capillary seal was still occurring, most

likely due to thermal expansion of the thruster body. A new cathode design was
implemented which put the cathode into compression with the capillary to
eliminate this leakage path. Visual observations in previous tests had noted

significant sparks in the thruster plume, leading to the conclusion that the thruster

specific power was too high. Results from the numerical model indicated that heat

transfer efficiency would improve at shorter capillary lengths. The UIUC thrust
stand was completed and checked out, and the initial performance tests with the

modified cathode design showed that cathode-capillary leakage was eliminated. The

sparks were eliminated at lower specific powers from 20 to 40 MJ/kg. The measured

specific impulse with the short 2.5 mm capillary was from 170 to 180 seconds, and
total efficiency increased to a range from 5.3 and 8.2 percent. Performance testing for

selected configurations is still in progress.

2.0 Present Experimental Capabilities

The Electric Propulsion Laboratory at UIUC has in place all the capability and

diagnostics required for performance testing of low power pulsed and DC arcjets.
The UIUC thrust stand is operating with excellent accuracy and sensitivity at very

low thrust levels. An important aspectof the experimental setup is the use of a PID
controller to maintain a constant thruster position, which reduces hysterisis effects.

Electrical noise from the arcjet induces some noise into the thrust signal, but this
does not affect the measurement (seeFig. 1). The noise is expected to be eliminated

with a low-pass filter or improved shielding. We have also implemented two

additional signal conditioning circuits in the data acquisition process - one for
breakdown voltage and one for pulse rate - to better track the thruster operating

characteristics over a longer time scale than previously done (seeFig. 2 and 3). All

appropriate calibrations are either complete or are in the final stages of checkout,
including a mass flow controller calibration system which will be completed shortly.

3.0 Analysis of Performance Results

Although we have improved the sealing and thermal characteristics of the

arcjet, additional work is still needed to improve the performance, particularly the



specific impulse. We have been evaluating our experimental results compared to
our numerical heat transfer model. The nozzle temperatures we determine

experimentally appear to correspond with the heat transfer trends we calculate
numerically. However, when we include estimates of nozzle, frozen flow and
external circuit efficiencies, our specific impulse predictions are much higher than

we measure experimentally. Accordingly, we have been readdressing some initial

assumptions to determine which loss mechanism(s) we are underestimating.

We have tentatively concluded that the nozzle losses may be much greater

than we have previously assumed. The two nozzle designs that have been tested

are 20 degree cones with area ratios of 250:1 and 150:1. These parameters were
selectedbased on the results of Curran, et al,1 which showed the 20 degree cone with

large area ratios to have slight performance benefits over other combinations of half
angle and area ratio. However, a significant difference between the very low power

pulsed arcjet at 4 mg/sec flowrate and the low power DC arcjet at 50 mg/sec flowrate

is the Reynolds number based on throat diameter. For a typical 1 kW DC arcjet, Re

is around 500, but for our 100 watt pulsed arcjet, Re is less than 200. An experiment

by Rothe 2 showed that when the Reynolds number drops below about 300, the

thrust coefficient becomes < 1, as viscous dissipation converts the directed kinetic

energy into random thermal energy, increasing the static temperature and

decelerating the flow. A DSMC analysis by Zelesnik 3 gives some numerical results

for very low Re nozzle performance with nitrogen propellant. In particular for a

case where the gas is at 1000 K and the nozzle wall is at 298 K, the nozzle efficiency

defined as Isp(actual)/Isp(ideal) drops below 50 percent. We have recently applied a

Navier-Stokes solver to our nozzle design to further substantiate our conclusion.

The Navier-Stokes code is currently being developed at UIUC for DC arcjet flows

under AFOSR sponsorship. The initial and boundary conditions used are

equivalent to our nozzle immediately following a pulse discharge. The results for

axial velocity and Mach number (Fig. 4 and 5) show qualitatively that the nozzle is

quite possibly decelerating the flow and that our thrust coefficient may be

approximately 1 or less. This accounts for the difference between our performance

predictions and experiment.

A fundamental question regarding the low values of the thrust measurements

involves whether the high losses are attributed to the low power, low Re regime in

which we are attempting to operate, or whether the problem lies with the pulsed



concept itself, or a combination of both. The nozzle loss mechanism would imply
that this is a scaling problem likely to be present in all electrothermal devices at this

operating condition, and to which our pulsed device is not immune. The thermal

efficiency is related to both the small dimensions of the capillary as well as to the

high peak temperature following a pulse discharge; however, compared to a DC
device, a somewhat lower thermal efficiency could be offset by a higher frozen flow

efficiency. To separate the scaling effects from the pulsed effects, we need to operate

at a higher power level (and thus higher mass flow rate and Re) in order to
determine whether the pulsed concept is feasible at any power and whether the

present performance limits are a function of the low power scale.

4.0 Technical Approach for Next ResearchPhase

We feel that we are at a point in the pulsed arcjet program where we can make

rapid progress and produce important results. The radiation-cooled device has
matured to the extent that it can be reconfigured rapidly and reliably for different

tests. All diagnostics are in order, and a range of numerical tools are in place for

design and analysis. Based on the results from Phase III and our recent nozzle

analyses, we seeseveral highly promising approaches, and we propose to tackle all
of them.

4.1. The scaling effects for very low Reynolds number nozzles must be identified.

A very significant result would be experimental data showing a dramatic

improvement in performance above a certain critical Reynolds number. Nozzle

performance trends can be found in the literature 4 for cold flow nitrogen and

hydrogen, but this data cannot be readily extrapolated to flows where the gas total

temperature is much higher than the wall temperature, since the wall temperature
can substantially affect the final result. Once we determine the scaling effects, we
will be able to implement design rules and determine operating points with

potential for much higher performance.

4.2. As previously discussed, viscous effects may affect the nozzle performance to
the extent that large area ratios and small cone angles are inappropriate in the low

Re regime. We feel that smaller area ratios and larger cone angles should be

investigated, and we propose an experimental approach combined with a smaller
numerical effort to identify these effects. For example, an area ratio of only 10



would give an ideal thrust coefficient of CF = 1.5, without incurring significant

viscous losses. We propose to run the pulsed arcjet with several reduced area ratio

nozzle configurations at identical operating conditions, power levels, pulse rates,
etc. The nozzle radiating surface area will not be significantly reduced so the nozzle

temperature will remain reasonably constant.

4.3. The third approach is to increase the thermal efficiency by decreasing the heat
transfer loss in the capillary. We feel that the way to address heat loss is by

increasing the mean Mach number of the flow where heat addition occurs, thereby

decreasing the residence time. We will design the capillary-nozzle interface such

that the pulse discharge passes through the throat and attaches in the supersonic

region of the nozzle. This is analogous to operating in a constricted mode similar to
a conventional DC arcjet. The bulk of the ohmic heating will occur at Mach
numbers between 0.5 and 1.0,as opposed to ohmic heating in the M = 0.0 to 0.5 range

as in the present design.

5.0 Proposed Statement of Work for Very Low Power Pulsed Arcjets

5.1. Run pulsed arcjet with simulated hydrazine at 500 W, 16-32 mg/sec to identify

performance trends, specific impulse and efficiency, versus Reynolds number and

input power. Run cold flow performance tests in the low Re range to obtain a

baseline thrust coefficient versus Re characteristic for simulated hydrazine.

Previous testing has been performed in the 80-200 watt, 2-8 mg/sec range.

5.2. Modify the available pulsed arcjet nozzles with smaller area ratio and/or larger

cone angle. Run hot and cold performance tests of pulsed arcjet with the modified

nozzles. Apply an available Navier-Stokes numerical code to truncated nozzles,

including 40:1 and 10:1 area ratios and 20 degree and 40 degree cone angles.

5.3. Fabricate a capillary geometry such that the arc passes through the constrictor

and attaches in the supersonic region of the nozzle. Thermal efficiency trends will

be identified by measuring nozzle surface temperature in addition to thrust.

6.0 References
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THRUST PERFORMANCE OF A VERY LOW POWER PULSED ARC JET

Gary F. Willmest and Rodney L. Burtontt

Department of Aeronautical and Astronautical Engineering

University of Illinois at Urbana-Charnpaign
Urbana, IL 61801

Abstract

This paper discusses testing and modeling of
a very low power (150 W) pulsed arcjet.
Electrical energy is transferred to the propellant
from a capacitive energy store, which delivers -1

current pulses at several kHz to the electrodes.
All the energy addition to the propellant occurs
upstream of the nozzle in a cylindrical 2.5 mm
diameter, 5 mm length capillary. The extremely
short duration current pulse raises the propellant
pressure and temperature in the capillary to
approximately 5 atm and 10,000 deg K. The high
enthalpy gas is expanded through a tungsten
nozzle with a 150:1 area ratio and a 0.4 mm
diameter throat. Thrust measurements are

obtained for simulated hydrazine (N2 + 2 H2)
propellant at flow rates from 2.5 to 4.0 x 10-o

kg/sec and 100-200 watts input power. Specific
impulses are between 175 and 195 seconds with
efficiencies from 2.0 to 4.6 percent. Estimates of
thermal efficiency using a 1-D time-dependent
heat conduction model indicate that over 80

percent of the energy deposited in the propellant
is transferred to the capillary walls by
conduction before the propellant passes the
nozzle throat. Design changes are proposed that
will result in a significant increase in thermal
efficiency and thruster performance.

Nomenclature

C
d*
D
h

Ipeak

Lt

recap
m
n

pps
P

P

PFN capacitance, F
nozzle throat diameter, m
capillary diameter, m

propellant enthalpy, J/kg
peak discharge current, amps
capillary length, m
inductance, H

propellant mass in capillary
propellant mass flow rate, kg/s
particle density, m "3
pulse rate, s "1
power, W
propellant density, kg/m 3

tGraduate Student; Associate Member, AIAA

ttAssociate Professor, Department of Aeronautical and
Astronautical Engineering; Associate Fellow, AIAA

Copyright ©1994 by the American Institute of Aeronautics and

Astronautics. Inc. All rights reserved.

r

R

Rarc
Rext

Vt
K

T

radius, m
total circuit resistance, ohms
arc resistance, ohms
external circuit resistance, ohms

arc discharge time, s
breakdown voltage
voltage at peak current
thermal conductivity, W/m K

pulse cycle time (= 1/pps), s
propellant temperature, K

I. Introduction

Electric propulsion for spacecraft primary
propulsion, attitude control and station-keeping
has been developed in various forms since the
late 1950's. Of the class of electrothermal

thrusters, the steady DC arcjet is the most
developed technology for low-medium power
requirements (several kW), but has the
disadvantage of decreasing efficiency, small
electrode gap and unstable operational modes at
very low power levels (less than 500 W). The
present trend to smaller satellites with little
power available for propulsion results in a need
for thrusters which can operate in the 50-200
watt range. In particular, constellations of small,
low-orbit communications satellites have a

requirement for efficient propulsion for orbit-
raising and drag makeup.

A relatively new candidate for the low
power regime is an arcjet which operates in a
pulsed mode. 1-6 With this device, a DC power
suppy charges a capacitor bank of a pulse forming
network (PFN), which is electrically connected
to the anode (nozzle) and the cathode. When the

breakdown voltage of the propellant is reached,
approximately 1000 volts, the capacitor bank
discharges, and the energy is transferred by
ohmic heating to the propellant in
approximately 1 ktsec. The resulting high
temperature, high pressure plasma (10,000 K, 5
atm) expands through the nozzle while the

capacitor bank recharges. This pulsed mode of
operation allows much higher peak pressure to



pulse timeto obtaintheenergydissipatedin the
capacitors.In thesecondmethod, a thermocouple
mounted on a capacitor allowed an estimate of
power loss by multiplying the estimated
capacitor heat capacity by dT/dt. Both methods
showed the power loss in the capacitors to be less
than 5 watts.

The DC resistance in the transmission path
is negligible; however as the inductance gets
extremely small, the rise time of the current
pulse becomes extremely short, raising the high
frequency resistance of the transmission path,
also referred to as a skin depth effect. An
estimate of resistance at an inductance of 0.2 _tH
and current rise times of 200 nsec gives a
calculated high frequency resistance of 0.006
ohms, which is negligible compared to the
internal capacitor resistance of 0.2 ohms.

An objective of the PFN design is that the
pulse energy be transferred in a single pulse
without oscillating between the anode and the
cathode. That is, the complete RLC circuit
including the arc impedance should be near-
critically damped. An underdamped circuit with
an exponentially decaying sinusoid for the
current should be avoided because it can cause

accelerated electrode wear by high coulomb
transfer for a given discharge energy. If the
circuit is critically damped, all the energy will
be transferred without current oscillation when

CR2/4Lt = 1. To maximize this parameter, the

current path between the capacitors and the
capillary is made coaxial to minimize the
inductance. In the real thruster, the arc

resistance is not constant, but estimating the arc
resistance as Vt/Ipeak gives Rarc approximately
5.1 to 6.4 ohms and the transfer efficiency 1-
Rext/R > 95 percent. Approximately 70% of the
energy delivered to the arc is transferred in the
first half cycle.

Thermal Characteristics

With the thruster running, the tungsten
nozzle and the front 1 cm of the thruster body
glow orange. A type K thermocouple was
mounted on the nozzle, giving the initial
temperature ramp rate, heat-up time, and steady
state temperature (Fig. 6). The nozzle achieves
95 percent of its 1123 K steady state temperature
after 4 minutes. A rough estimate of the anode
heat loss can be calculated from the slope of the
temperature curve, dT/dt at t=0 and the known
nozzle heat capacity. This calculation shows
that approximately 40 watts goes into anode
heating at 135 watts input power, or 30 percent of

the total. Heat conduction through the cathode
and the front insulator can be estimated as 30

watts or possibly higher at steady state. These
results show that the thermal efficiency is
extremely low.

Thruster Performance

Performance testing was conducted at NASA
Lewis Research Center on the pulsed arcjet at
power levels between 100 and 200 watts. Mass
flow rates tested were from 2.5 to 4.0 x 10 -6 kg/sec
of simulated hydrazine. This range of flow rates
was selected to keep the breakdown voltage and
the energy per pulse at reasonable levels, giving
specific powers between 38 and 60 MJ/kg. Two
PFN configurations were used with C = 0.05 _tf

and C = 0.10 _tf. Cold flow Isp'S were 105 seconds
and nozzle efficiencies were 83 percent. The
steady cold flow results compare well with the
experimental data of Whalen 8 for the same

nozzle area ratio, cone half angle, and Reynolds

number. Measured hot flow Isp.'s are shown in
Figure 7 and are between 175 and 195 seconds for
all tests with total efficiencies of 2.0 to 4.6

percent. The thrust response after power is turned
on is shown in Figure 8.

Electrode/Capillary Wear

Total operating time on the thruster was 63
minutes at an average input power of 150 watts
for a total energy input of 5.7 x 105 joules and 107

pulses. There was no appreciable change in the
capillary diameter due to erosion, although a
black coating formed on the inner surface. Very
little of this black discoloration appears at the
propellant feed hole inlet, indicating that the
hot gas in the capillary does not reverse flow into
the thruster after each pulse discharge. The
anode shows uniform material removal/erosion
where the arc attaches. There is no indication of

arc attachment inside the convergent section, and
the nozzle throat is in the as-machined
condition. The material loss of the cathode was

not measured but shows signs of smoothening of
rough edges. Material loss appears to be
minimal.

IV. Heat Transfer Model

A numerical model has been developed to
describe the time-dependent energy transfer
mechanisms in the pulsed arcjet. Because the arc
discharge time is much shorter than the time

between pulses, tp << "¢, the arc discharge can be
approximated as a discrete event in which the
energy stored on the capacitor bank is transferred



temperatureand thusalsodecreasesthe rateat
whichpropellantis ejectedfrom the capillary.

Further insight into the pulsed arcjet
performance can be obtained by examining the
impulse achieved during the first 50 _sec "pulse"
compared with the impulse obtained during the
200 _tsec "tail". The total impulse obtained in a
single pulse is 2.2 x 10 -6 N-s with 55 percent in the
pulse and the remaining 45 percent in the tail.
We define a propellant efficiency as the ratio of
the propellant mass ejected during the pulse to
the total mass passing through the capillary in
one complete cycle. Since the total mass that
must go through the capillary in a single cycle is
mass flow rate/pulse rate, or 5.0 x 10 -T0 kg, then
from Figure 12, 32 percent of the propellant is
ejected in the "pulse" and the propellant
efficiency is 32 percent. Roughly speaking, the
mass ejected during the pulse is at a temperature
characteristic of the arc while the mass ejected
in the tail is at a temperature characteristic of
the nozzle. The average performance of the
pulsed arcjet is low because a large fraction the
propellant mass in the tail exits the nozzle at a

relatively low velocity, even though the Isp for
the mass ejected in the pulse is high.

The obvious question that arises is whether
the performance of the low power pulsed arcjet
can be increased significantly. To obtain a
performance increase, the thermal efficiency
must be raised, since conduction heat loss appears
to be by far the highest loss mechanism. We
make a simple scaling argument to indicate a
direction for design improvement. We wish to

increase the heat loss time, which scales as mcap
h0 / (KdT/dr _ D L). Assuming that h 0 / (K
dT/dr D) is invariant, then the heat loss time

scales as mcap/L or as n_D 2/4. Since the Paschen
breakdown voltage, V b, is a function of nL, it may
be possible to increase n and decrease L, raising
thermal efficiency without changing the
breakdown voltage. This suggests that the
pulsed arcjet performance can be improved with
shorter, higher pressure capillaries.

VI. Acknowledgments

This work was supported by Grant NAG 3-
1360, awarded by the NASA Lewis Research
Center. J. M. Sankovic is the grant monitor. We
especially wish to thank R. M. Myers for many
stimulating discussions, T. W. Haag for technical
support in obtaining the performance data, and
K. Elam for fabricating the thruster components.
We also gratefully acknowledge the
Aeronautical and Astronautical Engineering

Department of the University of Illinois for
additional funding support.

VII. References

1Burton, R. L., et al., "Pulsed Electrothermal
Thruster," U.S. Patent Nos. 4,821,508 and

4,821,509, April 18, 1989.

2Taylor, R. D., Burton, R. L., and Wetzel, K.
K., "Preliminary Investigation of a Low Power
Pulsed Arcjet Thruster," AIAA Paper No. 92-

3113, July 1992.

3Burton, R. L., and D. Fleischer, S. A.

Goldstein, and D. A. Tidman, "Experiments on a
Repetitively Pulsed Electrothermal Thruster,"
Journal of Propulsion and Power, Vol. 6, No. 2,
1990, pp. 139-144.

4Burton, R. L., and S. Y. Wang, "Initial
Development of a Pulsed Electrothermal
Thruster," Journal of Propulsion and Power, Vol.
7, No. 2, 1991, pp 301-303.

5Burton, R. L., and F. D. Witherspoon,

"Energy Mass Coupling in High-Pressure Liquid
Injected Arcs," IEEE Transactions on Plasma
Science, Vol. PS-19, No. 2, 1991, pp 340-349.

6Willmes, G. F., and Burton, R. L.,

"Investigation of a Very Low Power Pulsed
Arcjet," IEPC Paper No. 93-136, Sept 1993.

7Curran, F. M., and Haag, T. W., "An
Extended Life and Performance Test of a Low-

Power Arcjet," AIAA Paper No. 88-3106, July
1988.

8Whalen, M.V., "Low Reynolds Number

Nozzle Flow Study," NASA TM100130, July 1987.

9Nachtrieb, R. T., "Application of the Saha

Equation to High Temperature (>6000 K) Rocket
Exhaust," Phillips Laboratory, Edwards AFB,
CA, Rept. No. PL-TR-92-3042, Jan. 1993

10Gordon, S., and McBride, B. J., "Computer
Program for Calculation of Complex Chemical
Equilibrium jCompositions," NASA SP-273, Mar
1976.

5



i i i i
i i i i

2SO ..... L ..... __ ..... _. ..... _. .....
i t i
i I I

...........
U I

r p I
,_ 1:50 ..... - ..... [- ..... [.- ..... ;.- .....

-,oo ........ ]-.... - ......
i i i

SO .......... _- ..... _- ..... _- ..... r
i / t i

0 L I J I i I l I I I I I I , i I , I I I .... I

0 1 2 8 4 $

Propellant Mess Flow Rate (mg/sec)

Fig 7. Specific Impulse from experiment. Input powers between

1 25 and 1 90 watts. Efficiencies from 2.0 to 4.6 percent.

ll.o -

4,0

3.o

g
2.o

I-
Power On

lap- 180 am¢

Cold Flow, lap. 105 u¢

1.0

o.o _ I a I ; I L I
-1.0 0.0 1.0 2.0 8.0

Time(m_)

Fig8. Initialthrustincrease after power application.
1 55 watts input power, 2.5 rag/sac.

I
4,0

A

I--

• _ tlXlTImelllmm Propellant In_tor
..____L_..

looo r I , I I I L ] i I , IIJ I i I i I _ I
o.o o.2 o.4 o.e o.a t.o 1= 1.4 l.e s.s 2.o

Ra,'Uus (ram)

Fig 9. Calculated temperatlue profiles In propellant and

insulator following a pulse at 1 00 time step intervmls.

1.0
Pulse I Tldl

0.8 j_@

0.8 Total Host Lou

0.7
o
I

_ 0.6

o. O.S

_ 0.4

o,2 -- ToUd _mNpy Elected
rj
eg

0.1
rd.

0.0
0 so Ioo 1so 2oo 2so

Time (pslc)

Fig 1 0. Comparison of conduction heat loss and total enthalpy

ejected from the nozzle In a single pulse.

0.08 -

o.o7 Pulse Tag j_

0.06

- o/-_'_ot4J Impulu -
005

__ o.o4
im

_ 0.03

0.02

0.01 Thrust

o.oo I I , I , I i I i
0 50 100 150 200 250

Time (psec)

Fig 11. Total impulse and instantaneous thrust during one cycle.

Discontinuities are from fluid properties Interpolation scheme.

-- 2.SE-6

2.0E-6

1.5E-6

1.0E-6 i

S.0E-7

5E-10

4["10

3E'10

:t
e;

• 2G-10

IE-10

6_-10 --

- [

I _ _j'_.
_--... [ Net Meu In C4pliar_ _ _

- I M_, E_oted_J
- I

- _ I

0 5O 100 150 200 250

Time (_sec)

Fig 1 2. Propellant mass ejected from capillary in

e single cycle. Mass is Injected at a constant rate,



Abstract submitted, 31st Joint Propulsion Conference, 1995

Pulsed Arcjet Performance Measurements

Gary F. Willmes* and Rodney L. Burton**

University of Illinois at Urbana-Champaign
Department of Aeronautical and Astronautical Engineering

Urbana, IL 61801

An electrothermal thruster which operates in a pulsed mode is being investigated at the
University of Illinois. Electrothermal thrusters operating at high specific impulse with low
power requirements offer significant benefits for the potentially large numbers of low orbiting
"microsats" and for constellations of communications satellites. A low orbit microsat with

body-mounted solar panels will have limited power available for electric propulsion.
Consequently, pulsed arcjet propulsion systems for these satellites must be able to operate stably
and efficiently at very low power levels.

In a pulsed electrothermal thruster, a DC power supply charges a capacitor bank which is
electrically connected to the anode (nozzle) and the cathode. When the breakdown voltage of the
propellant between the electrodes is reached, approximately 1000 volts, the capacitor bank
discharges, and the energy on the PFN capacitors is transferred to the propellant by ohmic
heating in an arc discharge. The heat addition occurs in the subsonic region upstream of the
nozzle throat in approximately 1 lasec, and the high temperature plasma then exhausts through a
nozzle on a comparatively longer time scale, approximately 1 msec. Because the arc discharge is
essentially a discrete time event, stability of the arc is not a problem, and the pulsed arcjet can
operate stably over a wide range of power levels and mass flowrates. A pulsed mode is expected
to have lower frozen flow losses than a DC arcjet because the energy addition occurs in a
relatively high pressure capillary where dissociation and ionization are reduced. Further, the

pulsed arcjet is not as sensitive to cathode-to-anode gap length, which is much more critical for a
DC arcjet at very low power.

The thruster assembly consists of the arcjet and capacitor energy store integrated within a
single housing. The arcjet design is based on a typical NASA 1-kw laboratory arcjet with
modifications for pulsed operation. The primary physical difference between the pulsed arcjet
and the constricted DC arcjet is the large gap of several mm between the cathode and the anode.
The arc discharge occurs entirely within a cylindrical cavity drilled in a boron nitride insulator.

This cylindrical region is closed at one end with a 4.76 mm diameter, 2% thoriated tungsten
cathode. At the other end is a conical tungsten nozzle with a 0.4 mm diameter throat, 150:1 area
ratio and a 20 degree half angle. The thruster design allows capillaries of different lengths and
diameters to be interchanged. Propellant is injected radially into the capillary through a 0.33 mm
diameter feed hole in the boron nitride insulator. The front thruster body has a 0.80 mm wall
thickness, which decreases heat conduction to the rear of the thruster and allowing the nozzle
temperature to reach 1200 K or higher. Testing is performed at the University of Illinois in a 1.5
m 3 vacuum tank with a 50 mTorr background pressure when the thruster is running. The
assembly is mounted as a single unit on a flexure-type thrust stand with a PID controller. The
PID controller uses a counterforce damper coil to eliminate low frequency oscillations and to
maintain a constant thruster position, allowing measurements at extremely low (0.1 raN), thrust
levels and reducing hysterisis effects.

In a previous paper, 1 the results of pulsed arcjet testing at the University of Illinois were
reported in which a pulsed electrothermal thruster using simulated hydrazine propellant was
operated at 125 to 200 watts. Isp's measured were from 175 to 195 sec. The paper also
presented a one-dimensional time-dependent numerical model which calculates propellant

* Corresponding author, ph. 217-244-5598; email: willmes@uxa.cso.uiuc.edu. Associate member AIAA.
** Associate Professor. Associate Fellow AIAA.
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temperatureprofiles in the capillary versustime and providesan estimateof thruster thermal
efficiency. This paperextends the previous researchwith experimental results for thrust,
efficiency, and Isp over a wide rangeof operatingconditions, including different propellant
flowrates,pulserate, input power,input current, pulseenergy,andcapillary dimensions. In
particular, thepaperdiscusseswhethera pulsedelectrothermaldevice is practicalat low power
andtheextentto which scalingeffectsdegradethrusterperformance.At very low power levels,
and hence low flowrates and Reynolds numbers, viscous losses in the nozzle increase
significantly and total efficiency and overall performance can decrease dramatically. An
understanding of the energy loss mechanisms, including thermal efficiency and nozzle
efficiency, are critical to the understanding of arcjet design criteria in this low power regime.
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